Quantitative - Simplification

Simplification Description

Important Terms and Formulae
1. VBODMAS rule while simplifying an expression     
  • V = Virnaculum or Bar     
  • B = Bracket    
  • O = Of    
  • D = Division    
  • M = Multiplication    
  • A = Addition     
  • S = Subtraction

2. Formulas:-

  • ${(a+b)^2 = (a^2  + b^2  + 2ab)}$   
  • ${(a-b)^2 = (a^2  + b^2  - 2ab)}$   
  • ${(a+b)^2   -  (a-b)^2  = 4ab}$   
  • ${(a+b)^2   + (a-b)^2   = 2(a^2  + b^2 )}$   
  • ${(a+b) (a-b) = a^2 - b^2}$   
  • ${(a+b+c)^2 = (a^2  + b^2  +  c^2  + 2ab + 2bc + 2ca)}$   
  • ${(a+b)^3 =  a^3+  b^3 + 3a^2b + 3ab^2}$   
  • ${(a-b)^3 =  a^3 - b^3 - 3a^2b + 3ab^2}$     
  • ${a^3 + b^3 = (a+b) (a^2  - ab + b^2 )}$   
  • ${a^3  - b^3 = (a-b) (a^2  + ab + b^2 )}$   
  • ${a^3 + b^3 +  c^3 - 3abc = (a  + b +  c) (a^2  + b^2  +  c^2  - ab- bc- ca)}$               If (a  + b +  c) = 0 then ${a^3+  b^3 +  c^3  = 3abc}$ 
  • ${a^{x}\times a^{y} = a^{x+y}}$   
  • ${a^{x}\div a^{y} = a^{x-y}}$
Excercise 1 Questions : 13 | Viewed : 564 Take an Exercise
Excercise 2 Questions : 13 | Viewed : 1620 Take an Exercise

Are you done with Learning?

Let's Start Practicing Go to Test