# Quantitative - Simplification

## Simplification Description

Important Terms and Formulae
1. VBODMAS rule while simplifying an expression
• V = Virnaculum or Bar
• B = Bracket
• O = Of
• D = Division
• M = Multiplication
• S = Subtraction

2. Formulas:-

• ${(a+b)^2 = (a^2 + b^2 + 2ab)}$
• ${(a-b)^2 = (a^2 + b^2 - 2ab)}$
• ${(a+b)^2 - (a-b)^2 = 4ab}$
• ${(a+b)^2 + (a-b)^2 = 2(a^2 + b^2 )}$
• ${(a+b) (a-b) = a^2 - b^2}$
• ${(a+b+c)^2 = (a^2 + b^2 + c^2 + 2ab + 2bc + 2ca)}$
• ${(a+b)^3 = a^3+ b^3 + 3a^2b + 3ab^2}$
• ${(a-b)^3 = a^3 - b^3 - 3a^2b + 3ab^2}$
• ${a^3 + b^3 = (a+b) (a^2 - ab + b^2 )}$
• ${a^3 - b^3 = (a-b) (a^2 + ab + b^2 )}$
• ${a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab- bc- ca)}$               If (a  + b +  c) = 0 then ${a^3+ b^3 + c^3 = 3abc}$
• ${a^{x}\times a^{y} = a^{x+y}}$
• ${a^{x}\div a^{y} = a^{x-y}}$
Excercise 1 Questions : 13 | Viewed : 579 Take an Exercise
Excercise 2 Questions : 13 | Viewed : 1644 Take an Exercise

Are you done with Learning?

Let's Start Practicing Go to Test